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Intramolecular cyclization in a series of thiophene-based dibromo[7]helicenes (4-6) with different helix
structures is investigated by vacuum pyrolysis, tin- and palladium-mediated C-C bond forming
reactions. The product with the cyclic structure of the annelated aromatic rings, which resembles
[8]circulene devoid of an atom linkage, is referred to as quasi-[8]circulene. Vacuum pyrolysis of 4 gives
insoluble, unidentified products, while 5 and 6 yield the corresponding quasi-[8]circulenes under similar
conditions. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses for 4 indicate
complex reaction pathways, while those for 5 and 6 show a single process corresponding to a loss of
1 equiv ofBr2 at about 330 �C.Pd-mediated reductive cyclizationprovides quasi-[8]circulenes for all three
[7]helicenes, though only 4 gives a good isolated yield. Tributyltin hydride-mediated radical cyclization of
4-6 provides quasi-[8]circulenes in excellent yields, and it is practically insensitive to the helix structure.
Experimental and calculated UV-vis absorption spectra for quasi-[8]circulenes and [8]circulenes are
reported. The results suggest that the lack of atom linkage in quasi-[8]circulene does not significantly
affect properties and conformation, compared to those for the corresponding [8]circulenes.

Introduction

Oligomers of [n]helicenes that are connected throughC-C
bonds at their inner rims are predicted to provide rigid helices
with extraordinary preference for helical folding.1 For ex-
ample, carbon-sulfur bis[7]helicene 1, in which the two
[7]helicene moieties have the same configuration, adopts
rigid, helically locked conformation both in the solid state
and in solution (Figure 1).1

The convergent synthetic route to “helically-locked” oligo-
mers of [n]helicenes could rely on intermolecular C-C bond
homocoupling reactions of functionalized [n]helicenes with
adequate solubility. However, we find that such an approach

is hindered by the competing intramolecular cyclization, as
illustrated by the C-C bond formation at the inner helical
termini of dibromo[7]helicene 2 to product 3 (Scheme 1).

The cyclic structure of the annelated aromatic rings such as
3 is an intriguing oligothiophene with a planar, cross-con-
jugated π-system,2,3 and it appears to resemble the Nenajden-
ko’s “sulflower”, carbon-sulfur [8]circulene (C2S)8,

4-6 a
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beautiful molecule with potentially importantmaterials prop-
erties but with very limited solubility (Figure 2).7,8 We note
that the R-CH positions of thiophenes in 3 would enable
functionalization, which is not possible in the carbon-sulfur
[8]circulene, thus providing anavenue to the cyclic structure of
annelated aromatic rings with improved solubility and/or as
building blocks for extended macromolecular structures and
assemblies.

Other conjugated cyclic structures similar to 3 are known
in the synthetic pathways to [n]circulenes. In Yamamoto’s
photosynthesis of [7]circulene, theReiss’ “hexa[7]circulenes”
were used as key synthetic precursors.9,10 Wynberg and co-
workers reported synthesis of heterocirculenes from “dehy-
drohelicenes”, compounds in which the two termini of a

helicene are connected by a σ bond, formed by dehydrogena-
tion of [5]helicenes and [6]helicenes, using a Scholl-type
reaction.11 Notably, all these examples are limited to the
cyclic structures of 5 and 6 annelated aromatic rings devoid
of solubilizing groups, and thus they possess exceedingly low
solubility. As it appears, the nomenclature for these con-
jugated cyclic structures is not established, we refer to 3 as
carbon-sulfur quasi-[8]circulene.12

In addition to the appeal as direct precursors to [n]circu-
lenes and building blocks for extended structures and assem-
blies, the structure of these quasi-[n]circulenes poses an
interesting question, whether the lack of an atom linkage
would significantly affect electronic structure and conforma-
tion, compared to those for the corresponding [n]circulenes.
For comparison, chirooptical properties of bis[7]helicene
1 are similar to those calculated for the corresponding
[15]helicene, suggesting that the absence of sulfur linkage
in 1has only aminor effect on the chirooptical properties and
on the conformation, compared to the [15]helicene.1

We have recently prepared a series of dibromo[7]helicenes
(4-6) and their trimethylsilyl derivatives, both as racemic
and enantiomerically pure products, and obtained their
X-ray single crystal structures.13-16 Thus, we have an avenue
to examine intramolecular cyclizationof dibromo[7]helicenes to
quasi-[8]circulenes. The helix structure of [7]helicenes 4-6

dictates the proximity of the two helical termini and the relative
orientation of the C-Br bonds. Therefore, the C-C bond
formation at the two helical termini of the [7]helicenes may
presumably be more efficient when the C 3 3 3C distance (r) is
shorter or the Br-C-C-Br torsion angle (φ) is approximately
within the coplanar arrangement (φ ≈ 180�). We note that the
average φ values determined from the X-ray structures of
4, 5, and 6 are 176�, 153�, and 146�, respectively; in the same
series, the C 3 3 3C distances decrease from about 4 Å to 3.3 Å
(Figure 3).17

We consider vacuum pyrolysis, tin- and palladium-
mediated C-C bond forming reactions. There are a plethora
of precedents for cyclization of bromoaryls and dibromoar-
yls, forming C-C bonds, using flash vacuum pyrolysis and

FIGURE 1. Bis[7]helicene and oligo[7]helicene.

SCHEME 1

FIGURE 2. Carbon-sulfur [8]circulene (C2S)8.

(7) Material properties of (C2S)8: (a) Dadvand, A.; Cicoira, F.; Cherni-
chenko, K. Y.; Balenkova, E. S.; Osuna, R. M.; Rosei, F.; Nenajdenko, V.
G.; Perepichka, D. F. Chem. Commun. 2008, 5354–5356. (b) Gahungu, G.;
Zhang, J.; Barancira, T. J. Phys. Chem. A 2009, 113, 255–262. (c) Ivasenko,
O.; MacLeod, J. M.; Chernichenko, K. Y.; Balenkova, E. S.; Shpanchenko,
R. V.; Nenajdenko, V. G.; Rosei, F.; Perepichka, D. F. Chem. Commun.
2009, 1192–1194. (d) Gahungu, G.; Zhang, J. J. Phys. Chem. Chem. Phys.
2008, 10, 1743–1747. (e) Fujimoto, T.; Suizu, R.; Yoshikawa, H.; Awaga, K.
Chem.;Eur. J. 2008, 14, 6053–6056. (f) Fujimoto, T.; Matsushita, M. M.;
Awaga, K. J. Am. Chem. Soc. 2008, 130, 15790–15791.

(8) [8]Circulenes with alternating benzene and furan rings: (a) Eskildsen,
J.; Reenberg, T.; Christensen, J. B. Eur. J. Org. Chem. 2000, 1637–1640.
(b) Erdtman, H.; H€ogberg, H.-E. Tetrahedron Lett. 1970, 38, 3389–3392.
(c) H€ogberg, H.-E. Acta Chem. Scand. 1972, 26, 2752–2758.

(9) Jessup, P. J.; Reiss, J. A. Tetrahedron Lett. 1975, 1453–1456.
(10) (a) Yamamoto, K.; Harada, T.; Okamoto, Y.; Chikamatsu, H.;

Nakazaki, M.; Kai, Y.; Nakao, T.; Tanaka, M.; Harada, S.; Kasai, N. J.
Am. Chem. Soc. 1988, 110, 3578–3584. (b) Yamamoto, K. Pure Appl. Chem.
1993, 65, 157–163. (c) Sato, M.; Yamamoto, K.; Sonobe, H.; Yano, K. J.
Chem. Soc., Perkin 2 1998, 1909–1913.

(11) (a) Dopper, J. H.; Oudman, D.;Wynberg, H. J. Org. Chem. 1975, 40,
3398–3401. (b) Dopper, J. H.; Wynberg, H. J. Org. Chem. 1975, 40, 1957–
1966.

(12) [m]Circulene is commonly defined as a circulene constructed out ofm
aromatic rings. Quasi is a prefix meaning “resembling” or “in somemanner”
and it is usually hyphenated to a noun. Therefore, we propose to refer to
cyclic compounds analogous to [m]circulenes, but composed of only m - 1
aromatic rings, as quasi-[m]circulenes.

(13) Rajca, A.; Miyasaka, M.; Pink, M.; Wang, H.; Rajca, S. J. Am.
Chem. Soc. 2004, 126, 15211–15222.

(14) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chem.;Eur. J. 2004,
10, 6531–6539.

(15) Rajca, A.; Pink, M.; Xiao, S.; Miyasaka, M.; Rajca, S.; Das, K.;
Plessel, K. J. Org. Chem. 2009, 74, 7504–7513.

(16) Rajca, A.; Wang, H.; Pink, M.; Rajca, S. Angew. Chem., Int. Ed.
2000, 39, 4481–4483.

(17) The X-ray crystallographically determined helical shapes are similar
to those calculated at the B3LYP/6-31G(d,p) level of theory (Table S1, SI).
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vacuum pyrolysis to provide both planar and curved
polycyclic aromatic compounds.18-21 Tin- and palladium-
mediated cyclization of dibromo[7]helicenes 4-6 could pro-
vide an advantage of much lower reaction temperatures than
vacuum pyrolysis.22 In particular, the bis(tri-tert-butylphos-
phine)palladium/K3PO4 catalytic system

23 was shown to be
effective for typically difficult C-Cbond formation between
the β-positions of the sterically hindered bromo-thiophene
derivatives.24-26

Here we report the intramolecular cyclization in a series of
[7]helicences, for which we optimize the cyclization reactions
in 4-6 to provide a synthetic pathway to quasi-[8]circulenes
7-9 (Figure 3).

Results and Discussion

Quasi-[8]circulene 7. When dibromo[7]helicene rac-4 is
heated to ∼240 �C under vacuum in a sealed capillary, the
color of the sample gradually darkens without melting, and
after several hours at ∼240 �C a black solid is obtained. The
solid is only partially soluble in organic solvents. In chloro-
form-d, the 1H NMR spectrum shows a weak singlet at the
chemical shift corresponding to the starting material rac-4,
with no evidence for quasi-[8]circulene 7 (Scheme 2). A
significant increase in the temperature of pyrolysis (50 �C)
leads to complete conversion of starting material rac-4, to
give a black, insoluble solid for which high-field 1H NMR
spectra in organic solvents such as chloroform-d or benzene-
d6 could not be obtained even with the aid of a cryoprobe.

Pyrolysis of dibromo[7]helicene rac-4 was monitored by
simultaneous thermogravimetry (TG) and differential scan-
ning calorimetry (DSC). The DSC plot shows no intense
peaks, and three processes associated with mass loss at 200,
270, and 400 �C are observed in the TG plot (Figure S12, SI),
suggesting complex reaction pathways.27

Tributyltin hydride-mediated radical cyclization of rac-4
provides a relatively clean crude reaction mixture, as indi-
cated by 1H NMR spectra (Figures S18 and S21, SI); upon
washing with methanol and acetone, a poorly soluble color-
less quasi-[8]circulene 7 is obtained in 80% yield. The solu-
bility of 7 is markedly decreased after purification to the
extent that the signature singlet 1H-resonance at δ 7.95 ppm
for 7 is difficult to detect even with the aid of a cryoprobe.
Themass spectrum (EI) of 7 shows the peak corresponding to
Mþ that has dominant intensity in the m/z 150-440 range
and exact mass of 417.8204 that is within less than 1 ppm of
the calculated value for C16H2S7. In the IR spectrum, the
stretching mode for the R-C-H is found at 3105 cm-1.

Pd-mediated reductive cyclization of rac-4 gives crude
reaction mixtures containing quasi-[8]circulene 7, as indi-
cated by the singlet at δ 7.95 ppm in the 1HNMRspectra and
by the molecular ion (Mþ) at m/z 417.8197 in the FABMS;
however, the aromatic region of the 1H NMR spectra also
shows doublets, which are tentatively assigned to other
debrominated byproduct (Figures S22 and S23, SI). Qua-
si-[8]circulene 7 is isolated in 70% yield (Figure S24, SI).
Bis[7]helicene products, corresponding to intermolecular
homocoupling of [7]helicene 4, are not detected.

Diheptyl Quasi-[8]Circulene 8. Vacuum pyrolysis of
dibromo[7]helicene rac-5 at 180-250 �C provides quasi-[8]-
circulene 8, with optimum conditions at 250 �Cand recycling

FIGURE 3. Dibromo[7]helicenes and the corresponding qua-
si-[8]circulenes.

SCHEME 2. Carbon-Sulfur Quasi-[8]Circulene 7

(18) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.;
Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500–1503.

(19) Marcinow, Z.; Grove, D. I.; Rabideau, P.W. J. Org. Chem. 2002, 67,
3537–3539.

(20) Amick, A. W.; Wakamiya, A.; Scott, L. T. J. Org. Chem. 2008, 73,
5119–5122.

(21) For review, see: Tsefrikas, V. M.; Scott, L. T. Chem. Rev. 2006, 106,
4868–4884.

(22) For recent examples of tin-mediated radical cyclizations forming
aryl-aryl C-C bonds, see: (a) Radix, S.; Barret, R. Tetrahedron 2007, 63,
12379–12387. (b) Takeuchi, K.; Ishita, A.; Matsuo, J.; Ishibashi, H. Tetra-
hedron 2007, 63, 11101–11107. (c) Harrowven, D. C.; Guy, I. L.; Nanson, L.
Angew. Chem., Int. Ed. 2006, 45, 2242–2245. (d) Wang, Y.-C.; Lin, C.-H.;
Chen, C.-M.; Liou, J.-P. Tetrahedron Lett. 2005, 46, 8103–8104.

(23) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719–2724.
(24) Miyasaka, M.; Rajca, A. Synlett 2004, 177–182.
(25) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. J. Am. Chem. Soc.

2005, 127, 13806–13807.
(26) Rajca, A.; Rajca, S.; Pink, M.; Miyasaka, M. Synlett 2007, 1799–

1822.

(27) The mass loss near and above a temperature of 200 �C is consistent
with the onset of decomposition of [7]helicene rac-4 observed as a color
change in the melting point apparatus (ref 13).
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of the deposited rac-5 (Scheme 3). 1H NMR spectra of the
crude reaction mixtures show 8 as the major product, with
negligible content of rac-5 (Figures S25 and S26, SI).

Pyrolysis of dibromo[7]helicene (þ)-5 was also monitored
by DSC, for which the sample is encapsulated inside a
crimped aluminum pan, the most widely used standard
sample preparation. Dibromo[7]helicene (þ)-5 shows melt-
ing behavior (endothermic peak) with the onset temperature
of 138( 2 �C, as reported previously.14 To explore pyrolysis
of (þ)-5, we increased the upper temperature limit of the
DSC scan to 180 �C, and after the experiment we collected
the sample for 1H NMR analysis. The 1H NMR spectrum
of the DSC samples shows the presence of [7]helicene (þ)-5
(δ 7.107) and a very small admixture of quasi-[8]circulene 8
(δ 7.989) (Figure S7, SI).28,29 Further extension of the upper
temperature limit to 200 �C reveals an additional exothermic
peak at about 182 �C (onset at 181 �C); after 1 min at 200 �C,
the return scan is flat without significant changes in the heat
flow (Figure 4).

1H NMR and FABMS analyses of the recovered DSC
samples indicate clean formation of quasi-[8]circulene 8,
with a melting point at 320-322 �C that is significantly
above 200 �C (Figures S8 and S9, SI). Therefore, the
exothermic peak at about 182 �C is assigned to a cyclization
reaction in which dibromo[7]helicene (þ)-5 is debrominated
to produce quasi-[8]circulene 8.

When simultaneous TG/DSC is carried out in a ceramic
open sample pan, only the peak for melting of (þ)-5 has a
significant intensity in the DSC plot. In contrast to rac-4, the
TG plot for (þ)-5 shows only one process with a mass
decrease corresponding to the loss of 1 equiv of Br2 at about
330 �C (Figure S10, SI). The 1H NMR spectrum of the
recovered TG/DSC sample indicates formation of qua-
si-[8]circulene 8 (Figure S11, SI).

The tributyltin hydride-mediated cyclization of (þ)-5
provides quasi-[8]circulene 8 at much milder conditions
compared to those for pyrolysis. Analyses of the aromatic
region of the 1H NMR spectra for crude reaction mixtures
indicate complete conversion of (þ)-5 to quasi-[8]circulene 8.
Diheptyl quasi-[8]circulene 8 is readily isolated as a pale
yellow solid by washing with organic solvents. Pd-mediated
C-C bond forming reactions provide reaction mixtures
containing 8 (NMR yield of 10%) and unreacted rac-5; no

evidence for products corresponding to intermolecular
homocoupling of [7]helicene 5 is found.30

Tetraheptyl Quasi-[8]Circulene 9. Following the same
procedure for pyrolysis of dibromo[7]helicenes rac-5 and
(þ)-5, pyrolysis of dibromo[7]helicene rac-6 at 250-260 �C
provides the corresponding quasi-[8]circulene 9 as a pale
yellow solid in 70% isolated yields (Scheme 4).31

Simultaneous TG/DSC of rac-6 gives similar results to
that for (þ)-5. In particular, TG indicates a single process
with a mass decrease corresponding to the loss of 1 equiv of
Br2 at about 330 �C, which is the same temperature as
observed for (þ)-5. The corresponding DSC plot shows the
expected melting behavior (endothermic peak) at about 100
�C, and more importantly, another broad, exothermic peak
at about 330 �C, which coincides with the loss of Br2
observed in the TG plot (Figure 5).32,33

Tributyltin hydride-mediated cyclization of rac-6 gives
quasi-[8]circulene 9 in excellent (∼90%) isolated yields. In
contrast, Pd-mediated C-C bond forming reactions of
dibromo[7]helicene rac-6 (and (þ)-6) give complex reaction

SCHEME 3. Diheptyl Quasi-[8]Circulene 8

FIGURE 4. Differential scanning calorimetry for [7]helicene (þ)-5.
Scan rate 20 deg/min.

SCHEME 4. Tetraheptyl Quasi-[8]Circulene 9

(28) Vacuum pyrolysis of dibromo[7]helicene rac-5 at 180 �C leads to a
low conversion to diheptyl quasi-[8]circulene 8 (Table S8, SI).

(29) In FABMS of dibromo[7]helicenes 4 and 5, and bis(trimethylsilyl)-
substituted derivatives of 4-6, the [M - 2Br]þ fragment ions have low
relative amplitude (15% or less) compared to that of the [M]þ or [M þ 2]þ

ions; however, for dibromo[7]helicene 6, the [M - 2Br]þ fragment ion is
dominant (Table S4 and Figure S15, SI).

(30) Bis(trimethylsilyl)-substituted quasi-[8]circulene 8, designated as
8-(TMS)2, is also isolated in low yield from the McMurry reaction of the
corresponding dibromo[7]helicene (SI).

(31) Quasi-[8]circulene 9 was isolated in low yields from acid-mediated
deprotections of bis(trimethylsilyl)-substituted derivatives of [7]helicene rac-
6 (ref 15).

(32) TG/DSC of rac-6, contained in a ceramic open sample pan that was
covered with aluminum foil, is qualitatively similar to that in Figure 5.
However, in TG, the loss of Br2 is observed at a much lower temperature of
about 265 �Cand in the narrower temperature range; inDSC, the exothermic
peak at about 265 �C is narrower and more intense (Figure S13, SI).

(33) 1H NMR spectrum of the recovered TG/DSC sample indicates
formation of quasi-[8]circulene 9 (Figure S14, SI).
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mixtures, as indicated by 1H NMR (chloroform-d ) spectra;
quasi-[8]circulene 9 is isolated in ∼10% yield. The major
product is isolated in ∼50% yield. In the mass spectrum
(FAB) of this product, the peak with dominant intensity in
the m/z 200-2000 range has an exact mass of 798.3442,
which is within 1.6 ppm of the calculated value for C48H62S5.
Although this molecular formula is identical to that of
quasi-[8]circulene 9, 1H and 13CNMR spectra are consistent
with the C1 point group, thus indicating that this product is
an isomer of 9. Attempts to identify this product by X-ray
crystallography were not successful.34

Crystal Structure of Tetraheptyl Quasi-[8]Circulene 9. The
X-ray structure of 9 was determined by synchrotron radia-
tion, using a small colorless plate-shaped crystal (Figure 6).

The π-system of 9 adopts an approximately planar con-
formation as indicated by a small value (0.0650 Å) of mean
deviation from a calculated least-squares plane including all
benzene and thiophene rings (S1-S5, C1-C20). In the bay
area, the C1-C2-C19-C20 torsion angle of 8.7(15)� sug-
gests a small out-of-plane distortion.

The π-systems of 9 slip-stack with the distance between
least-squares planes of about 3.52 Å, forming columns along
the crystallographic a-axis. Short intermolecular S 3 3 3 S con-
tacts are observed within the columns and between neigh-
boring columns varying between 3.53 and 3.64 Å (Figure 7).

Experimental and Calculated UV-Vis Absorption Spectra

for Quasi-[8]Circulenes and [8]Circulenes. UV-vis absorp-
tion spectra for quasi-[8]circulenes 7-9 (Figure 8) show
similar spectral patterns and are slightly blue-shifted com-
pared to the corresponding [7]helicenes 4-6.15 The spectra are
progressively more red-shifted from 7 to 8 to 9 (Table S2, SI),
which is similar to the trend found in the corresponding [7]heli-
cenes.15 This result corroborates the increased electron delo-
calization from 7 to 8 to 9, due to replacement of cross-
conjugated thiophene rings in 7with conjugatedbenzene rings.

Computationalmodeling is carriedout to investigatewhether
the lack of atom linkage in quasi-[8]circulenes 7-9 would
significantly affect the conformation and electronic structure,
compared to those for the corresponding [8]circulenes. Quasi-
[8]circulene 7 and [8]circulene (C2S)8, as well as simplified
structures corresponding to 8 and 9, in which the heptyl chains
are replaced with methyl groups (Chart 1), are studied.

Conformations for 7, (C2S)8, 10-(CH3)2, 11-(CH3)2,
12-(CH3)4, and 13-(CH3)4 are assessed by full geometry
optimizations and vibrational frequency calculations within
the respective point groups of symmetry, using theB3LYP/6-
31G(d,p) method (Table S13, SI).35 We found that all of the
three [8]circulenes, (C2S)8, 11-(CH3)2, and 13-(CH3)4, pos-
sess planar π-systems.36 For quasi-[8]circulenes, the planar
geometries are either shallow minima with very small, posi-
tive vibrational frequency (6 cm-1 for 7) or structures with
one imaginary frequency (i21 cm-1 for 10-(CH3)2 and
i101 cm-1 for 12-(CH3)4). These very small, positive vibra-
tional frequencies and imaginary frequencies correspond to
the out-of-plane distortion of the π-system with the disrota-
tory movement of the CH bonds in the bay area of qua-
si-[8]circulene. The corresponding nonplanar geometries for
10-(CH3)2 and 12-(CH3)4 with the C2 point groups of
symmetry are minima; however, their energy is practically
identical and only 4.7 kcal mol-1 lower than the planar C2v-
symmetric structures, respectively.37 For C2-symmetric qua-
si-[8]circulenes 10-(CH3)2 and 12-(CH3)4, the C(H)-C-C-

FIGURE 5. Simultaneous thermogravimetry and differential scan-
ning calorimetry for [7]helicene rac-6. Scan rate 20 deg/min.

FIGURE 6. Molecular structure of tetraheptyl quasi-[8]circulene
9. Carbon and sulfur atoms are depicted with thermal ellipsoids set
at the 50% probability level. Disorder in two heptyl groups and in
S3/S3d (60:40) are omitted for clarity. Disorder is illustrated in
Figure S1, SI.

CHART 1. Structures of Simplified Quasi-[8]Circulenes and
[8]Circulenes

(34) One of the reviewers suggested the possibility of cyclization between
the R- and β-positions of thiophenes.

(35) Frisch, M. J.; et al. Gaussian 03, Revision E.01; Gaussian,
Wallingford, CT, 2004.

(36) This result is in agreement with the previously reported X-ray
structure and calculations for [8]circulene (C2S)8: ref 6.

(37) (a) For quasi-[8]circulene 10-(CH3)2, the C2-symmetric minimum and
the C2v-symmetric transition state possess similar energies; the C2-symmetric
structure is lower in energy by 0.04 kcal mol-1, but after zero-point vibrational
energy (ZPVE) correction, the C2v-symmetric structure is lower in energy by
0.04 kcalmol-1. (b) For quasi-[8]circulene 12-(CH3)4, theC2-symmetricminimum
is lower in energy by 5.00 kcal mol-1 before ZPVE correction and by 4.69 kcal
mol-1 after ZPVE, compared to that of the C2v-symmetric transition state.



9110 J. Org. Chem. Vol. 74, No. 23, 2009

JOCArticle Rajca et al.

C(H) torsion angles, analogous to the C1-C2-C19-C20
torsion angle of 8.7(15)� in the X-ray structure of 9, are 7.8�
and 28.6�, respectively. These results suggest that the pre-
ference for nonplanar geometry of theπ-system is increasing,
with the greater number of benzene rings, but overall the
potential energy surfaces for all three quasi-[8]circulenes are
rather shallow with nearly planar geometries.38

The UV-vis absorption spectra for 7, (C2S)8, 10-(CH3)2,
11-(CH3)2, 12-(CH3)4, and 13-(CH3)4 are calculated by using
the TD-B3LYP/6-31G(d,p) method with the IEF-PCM-
UAHF solvent model for cyclohexane.35 The calculated
spectra for quasi-[8]circulenes 7, 10-(CH3)2, and 12-(CH3)4
show an excellent agreement with experimental spectra for
the corresponding quasi-[8]circulenes 7, 8, and 9; in particu-
lar, the UV-vis spectra are progressively more red-shifted
with the increasing number of benzene rings (Figure 8).Most
importantly, the calculated spectra of [8]circulenes and the
corresponding quasi-[8]circulenes possess similar spectral
patterns. Overlapping onsets of absorption are observed,
with the exception of quasi-[8]circulene 7 and the corre-
sponding D8h-symmetric [8]circulene (C2S)8, in which the
lowest energy transitions are symmetry-forbidden.39 Thus,
we conclude that both conformations and electronic struc-
tures for the studied quasi-[8]circulenes are similar to those
for the corresponding [8]circulenes.

Effect of Helix Structure on the Intramolecular Cyclization

Reaction of [7]Helicenes to Quasi-[8]Circulenes. The helix
structure dictates the geometry at the two C-Br termini of
the inner helix in [7]helicene (Table S1, SI), and therefore it
may affect the cyclization reaction forming the C-C bond
between the termini carbons.

We postulate that shorter C 3 3 3C distances between the
termini of the inner helix in [7]helicenes facilitate cyclization
by pyrolysis, i.e., [7]helicene 6, with the shortest C 3 3 3C
distance of 3.30 Å, is most efficiently converted to the
corresponding quasi-[8]circulene. Notably, tributyltin hy-
dride-mediated radical cyclization of 4-6, which is carried
out in solution under relatively milder conditions, appears to
be practically insensitive to the C 3 3 3C distances, and thus
provides a general method for the synthesis of qua-
si-[8]circulenes from dibromo[7]helicenes.

Pd-mediated reductive cyclization to quasi-[8]circulene is
most efficient for [7]helicene 4. This result may be rationa-
lized by considering the palladium complex prior to the

reductive elimination.40,41 Formation of such a complex would
require distortion of the helix so both termini are oriented in the
same direction to accommodate the C-Pd-C bond angle of
about 90�. This distortion of the helix, whichmay be analogous
to that calculated for theCs-symmetric transition state for race-
mization of a typical [n]helicene (n < 9),42 will be most facile
when the termini are the least overlapping as in the helix of 4.

Conclusion

Intramolecular cyclization at the two bromine-substituted
termini of the inner helix in [7]helicene provides a pathway to

FIGURE 7. Crystal packing plots of tetraheptyl quasi-[8]circulene 9. Left plot: View along the a-axis. Right plot: View along the b-axis. Sulfur
atoms and short S 3 3 3 S contacts are indicated with yellow-orange circles and dashed lines, respectively.

FIGURE 8. UV-vis absorption spectra. Top plots: Experimental
spectra for quasi-[8]circulenes 7-9. Bottom plots: Calculated spec-
tra for quasi-[8]circulenes 7 (C2v), 10-(CH3)2 (C2), and 12-(CH3)4
(C2) (solid lines), and the corresponding [8]circulenes (C2S)8,
11-(CH3)2, and 13-(CH3)4 (dashed lines). All spectra are calculated
at the TD-B3LYP/6-31G(d,p) level with the IEF-PCM-UAHF
solvent model for cyclohexane; the ground state geometries are
optimized at the B3LYP/6-31G(d,p) level in the gas phase. Because
of low solubility of 7 and 8 in cyclohexane, their experimental
spectra are only qualitative.

(38) Increasingpreference fornonplanarity is expectedas, alreadywithseven
annelated benzene rings, [7]circulene adopts saddle-shape geometry: ref 10a.

(39) Calculated onsets for the lowest energy electronic transitions (λonset
in Table S13, SI) are similar, with small red shifts for quasi-[8]circulenes.

(40) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398–3416.
(41) Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am.

Chem. Soc. 2008, 130, 9613–9620.
(42) Janke, R. H.; Haufe, G.; W€urthwein, E.-U.; Borkent, J. H. J. Am.

Chem. Soc. 1996, 118, 6031–6035.
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a quasi-[8]circulene, a cyclic structure of the annelated aro-
matic rings that closely resembles [8]circulene. Tributyltin
hydride-mediated radical cyclization gives quasi-[8]circu-
lenes in excellent yields, and this cyclization reaction is
practically insensitive to the geometry of the termini of inner
helix in [7]helicenes. We found that the lack of atom linkage
in thiophene-rich quasi-[8]circulenes does not significantly
affect conformation and electronic structure, compared to
those for the corresponding [8]circulenes.

Experimental Section

General Procedures for Cyclization of [7]Helicenes 4-6 to

Quasi-[8]Circulenes 7-9: Vacuum Pyrolysis. [7]Helicene was
pyrolyzed at 180-290 �C, with the vacuum (p . 0.1 mTorr)
adjusted for each [7]helicene for optimum trade-off between rate
of sublimation/evaporation and of quasi-[8]circulene forma-
tion. After several hours, the sublimed material (primarily
unreacted [7]helicene) was recycled to the pyrolysis vessel with
solvent, and the pyrolysis was resumed. This process was
repeated until the starting [7]helicene was consumed. From
pyrolysis of rac-4, quasi-[8]circulene 7 could not be isolated.
From pyrolysis of 5 at ∼250 �C, quasi-[8]circulene 8 could only
be obtained as a brown solid and in low yield either from the
residue at the bottom of the pyrolysis vessel or following rapid
filtration through silica plug with benzene. From pyrolysis of
6 at 250-260 �C (65.0 mg, 0.0678 mmol), quasi-[8]circulene
9 (39.1 mg, 72%) was isolated as a pale yellow solid after column
chromatography (silica, hexane). Residual impurities in the alipha-
tic region of the NMR spectra were removed by washing with
methanol and pentane.

Tributyltin Hydride-Mediated Cyclization. A solution of n-
Bu3SnH (2-6 equiv) and AIBN (2-4 equiv) in toluene was
added dropwise to a refluxed solution of [7]helicene (2-25 mg,
1 equiv) in toluene. The total volume of toluene corresponded to
about 6 mM concentration of [7]helicene in the resulting reac-
tionmixture. After 2-4 h under reflux, the toluene was removed
under vacuum, to provide a crude product as a sticky solid.
Sequential washing withmethanol and acetone ormethanol and
pentane provided quasi-[8]circulene as a white solid (7) or pale
yellow solid (8 and 9) in good yield (76-93%).

Pd-Mediated Cyclization. [7]Helicene (1.9-51 mg, 1 equiv),
Pd[P(t-Bu)3]2 (1-2.5 equiv), and K3PO4 (2-7 equiv) in toluene
(0.5-4.5 mL) were stirred at 60-80 �C for 20-48 h. The
reactionmixture, starting from rac-4 (6.08mg), was centrifuged,
and then the insoluble part was treated with water, methanol,
acetone, and ethyl acetate, to provide quasi-[8]circulene 7 as a
brown solid (3.14mg, 71%). The reactionmixture, starting from
rac-5 (1.6 mg), was filtered through Celite, and then concen-
trated in vacuo to provide the crude product; the 1H NMR
spectrum and FABMS showed quasi-[8]circulene 8, starting
material, and another byproduct. The reactionmixture, starting
from rac-6 (34.6 mg), was concentrated and worked up with
chloroform/water; the chloroform layer was filtered through
Celite and concentrated to provide the crude product. Reactions

starting from (þ)-6 provided similar crude products (Figure
S35, Supporting Information). Chromatography (deactivated
silica, ethyl acetate, chloroform, hexane), followed by treat-
ments with solvents, gave quasi-[8]circulene 9 as a yellow solid
(2.9 mg, 10%) and another product (15.7 mg, Supporting
Information).

Quasi-[8]circulene 7:Mp>400 �C (under vacuum). 1HNMR
(500 MHz, chloroform-d) δ 7.95 (s, 2 H). LR/HR FABMS
(ONPOE) m/z (ion type, %RA for m/z 200-2000, devia-
tion from formula) 417.8197 ([M]þ, 100%, 1.2 ppm for
12C16

1H2
32S7). LR/HR EIMS m/z (ion type, %RA for m/z

150-440, deviation for the formula) 417.8204 ([M]þ, 100%,
0.6 ppm for 12C16

1H2
32S7). IR (ZnSe, cm-1) 3105 (R-C-H of

thiophene), 2961, 2918, 2850 (C-H).
Quasi-[8]circulene 8: Mp 320-322 �C (under nitrogen). 1H

NMR (500 MHz, chloroform-d) δ 7.983 (s, 2 H), 3.062-3.029
(m, 4 H), 1.844-1.781 (m, 4 H), 1.556-1.489 (m, overlapped
withH2O, 4H), 1.454-1.252 (m, 12H), 0.912 (t, J=7Hz, 6H).
LR/HR FABMS (3-NBA) m/z (ion type, % RA for m/z
200-1500, deviation for the formula) 608.0839 ([M]þ, 100%,
-1.7 ppm for 12C32

1H32
32S6). IR (ZnSe, cm-1) 3111 (R-C-H of

thiophene), 2956, 2923, 2853, 1467.
Quasi-[8]circulene 9: Rf 0.56 (hexane). Mp 197-199 �C (lit.15

mp 198-200 �C). 1HNMR (500MHz, chloroform-d) δ 7.894 (s,
2 H), 3.086-3.035 (m, 8 H), 1.846-1.770 (m, 8 H), 1.435-1.422
(m, 8 H), 1.253-1.101 (m, 16 H), 0.914-0.766 (m, 12 H). 13C
NMR (125 MHz, chloroform-d) aromatic region, expected
10 resonances, found 10 resonances at δ 143.2, 140.2, 136.9,
135.06, 134.1, 131.0, 130.3, 127.9, 126.7, 125.4, aliphatic region,
expected 14 resonances, found 11 resonances at δ 32.07, 32.05,
31.8, 30.20, 30.18, 29.96, 29.79, 29.70, 29.1, 22.7, 14.1. LR/HR
FABMS (3-NBA) m/z (ion type, %RA for m/z 400-1200,
deviation for the formula) 798.3448 ([M]þ, 100%, 0.8 ppm for
12C48

1H62
32S5). IR (ZnSe, cm-1) 3136 (weak), 2956, 2920, 2853,

1471, 1107, 802.
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